Nonsymmetric Algebraic Riccati Equations and Wiener-Hopf Factorization for M-Matrices
نویسنده
چکیده
We consider the nonsymmetric algebraic Riccati equation for which the four coefficient matrices form an M -matrix. Nonsymmetric algebraic Riccati equations of this type appear in applied probability and transport theory. The minimal nonnegative solution of these equations can be found by Newton’s method and basic fixed-point iterations. The study of these equations is also closely related to the so-called Wiener-Hopf factorization for M -matrices. We explain how the minimal nonnegative solution can be found by the Schur method and compare the Schur method with Newton’s method and some basic fixed-point iterations. The development in this paper parallels that for symmetric algebraic Riccati equations arising in linear quadratic control.
منابع مشابه
On a quadratic matrix equation associated with an M-matrix∗
We study the quadratic matrix equation X2 − EX − F = 0, where E is diagonal and F is an M -matrix. Quadratic matrix equations of this type arise in noisy Wiener–Hopf problems for Markov chains. The solution of practical interest is a particular M -matrix solution. The existence and uniqueness of M -matrix solutions and numerical methods for finding the desired M -matrix solution are discussed b...
متن کاملOn the Doubling Algorithm for a (Shifted) Nonsymmetric Algebraic Riccati Equation
Nonsymmetric algebraic Riccati equations for which the four coefficient matrices form an irreducible M -matrix M are considered. The emphasis is on the case where M is an irreducible singular M -matrix, which arises in the study of Markov models. The doubling algorithm is considered for finding the minimal nonnegative solution, the one of practical interest. The algorithm has been recently stud...
متن کاملA note on the minimal nonnegative solution of a nonsymmetric algebraic Riccati equation
For the nonsymmetric algebraic Riccati equation for which the four coefficient matrices form an M -matrix, the solution of practical interest is often the minimal nonnegative solution. In this note we prove that the minimal nonnegative solution is positive when the M -matrix is irreducible.
متن کاملNonsymmetric Algebraic Riccati Equations and Hamiltonian-like Matrices
We consider a nonsymmetric algebraic matrix Riccati equation arising from transport theory. The nonnegative solutions of the equation can be explicitly constructed via the inversion formula of a Cauchy matrix. An error analysis and numerical results are given. We also show a comparison theorem of the nonnegative solutions.
متن کاملA Survey of Nonsymmetric Riccati Equations
We survey recent and also older results on nonsymmetric matrix Riccati differential equations and in the time invariant case on the corresponding algebraic Riccati equations. In particular we cite various applications connected with matrix Riccati equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 23 شماره
صفحات -
تاریخ انتشار 2001